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ABSTRACT
Mapping road networks today is labor-intensive. As a result, road
maps have poor coverage outside urban centers in many coun-
tries. Systems to automatically infer road network graphs from
aerial imagery and GPS trajectories have been proposed to im-
prove coverage of road maps. However, because of high error rates,
these systems have not been adopted by mapping communities.
We propose machine-assisted map editing, where automatic map
inference is integrated into existing, human-centric map editing
workflows. To realize this, we build Machine-Assisted iD (MAiD),
where we extend the web-based OpenStreetMap editor, iD, with
machine-assistance functionality. We complement MAiD with a
novel approach for inferring road topology from aerial imagery
that combines the speed of prior segmentation approaches with
the accuracy of prior iterative graph construction methods. We
design MAiD to tackle the addition of major, arterial roads in re-
gions where existing maps have poor coverage, and the incremental
improvement of coverage in regions where major roads are already
mapped. We conduct two user studies and find that, when partici-
pants are given a fixed time to map roads, they are able to add as
much as 3.5x more roads with MAiD.

CCS CONCEPTS
• Human-centered computing → Human computer interaction
(HCI); • Applied computing→ Cartography;
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1 INTRODUCTION
In many countries, road maps have poor coverage outside urban
centers. For example, in Indonesia, roads in the OpenStreetMap
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dataset [9] cover only 55% of the country’s road infrastructure1; the
closest mapped road to a small village may be tens of miles away.
Map coverage improves slowly because mapping road networks
is very labor-intensive. For example, when adding roads visible in
aerial imagery, users need to perform repeated clicks to draw lines
corresponding to road segments.

This issue has motivated significant interest in automatic map
inference. Several systems have been proposed for automatically
constructing road maps from aerial imagery [6, 11] and GPS trajec-
tories [4, 15]. Yet, despite over a decade of research in this space,
these systems have not gained traction in OpenStreetMap and other
mapping communities. Indeed, OpenStreetMap contributors con-
tinue to add roads solely by tracing them by hand.

Fundamentally, high error rates make full automation impracti-
cal. Even state-of-the-art automatic map inference approaches have
error rates between 5% and 10% [2, 15]. Navigating the road net-
work using road maps with such high frequencies of errors would
be virtually impossible.

Thus, we believe that automatic map inference can only be useful
when it is integrated with existing, human-centric map editing
workflows. In this paper, we propose machine-assisted map editing
to do exactly that.

Our primary contribution is the design and development of
Machine-Assisted iD (MAiD), wherewe integratemachine-assistance
functionality into iD, a web-based OpenStreetMap editor. At its
core, MAiD replaces manual tracing of roads with human validation
of automatically inferred road segments. We designed MAiD with a
holistic view of the map editing process, focusing on the parts of the
workflow that can benefit substantially from machine-assistance.
Specifically, MAiD accelerates map editing in two ways.

In regions where the map has low coverage, MAiD focuses the
user’s effort on validation of major, arterial roads that form the
backbone of the road network. Incorporating these roads into the
map is very useful since arterial roads are crucial to many routes.
At the same time, because major roads span large distances, val-
idating automatically inferred segments covering major roads is
significantly faster than tracing the roads manually. However, road
networks inferred by map inference methods include both major
and minor roads. Thus, we propose a novel shortest-path-based
pruning scheme that operates on an inferred road network graph
to retain only inferred segments that correspond to major roads.

In regions where the map has high coverage, further improv-
ing map coverage requires users to painstakingly scan the aerial
imagery and other data sources for unmapped roads. We reduce
this scanning time by adding a “teleport” feature that immediately

155% coverage is computed by summing length of OSM roads and comparing against
The World Factbook known road network length (https://www.mapbox.com/data-
platform/country/#indonesia).
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pans the user to an inferred road segment. Because many inferred
segments correspond to service roads and residential roads that
are not crucial to the road network, we design a segment ranking
scheme to prioritize segments that are more useful.

We find that existing schemes to automatically infer roads from
aerial imagery are not suitable for the interactive workflow in
MAiD. Segmentation-based approaches [6, 11, 14], which apply a
CNN to label pixels in the imagery as “road” or “non-road”, have
low accuracy because they require an error-prone post-processing
stage to extract a road network graph from the pixel labels. Iterative
graph construction (IGC) approaches [2, 17] improve accuracy by
extracting road topology directly from the CNN, but have execution
times six times slower than segmentation, which is too slow for
interactivity.

To facilitate machine-assisted interactive mapping, we develop
a novel method for extracting road topology from aerial imagery
that combines the speed of segmentation-based approaches with
the high-accuracy of iterative graph construction (IGC) approaches.
Our method adapts the IGC process to use a CNN that outputs road
directions for all pixels in one shot; this substantially reduces the
number of CNN evaluations, thereby reducing inference time for
IGC by almost 8x with near-identical accuracy. Furthermore, in
contrast to prior work, our approach infers not only unmapped
roads, but also their connections to an existing road network graph.

To evaluate MAiD, we conduct two user studies where we com-
pare the mapping productivity of our validation-based editor (cou-
pled with our map inference approach) to an editor that requires
manual tracing. In the first study, we ask participants to map roads
in an area of Indonesia with no coverage in OpenStreetMap, with
the goal of maximizing the percentage of houses covered by the
mapped road network. We find that, given a fixed time to map roads,
participants are able to produce road network graphs with 1.7x the
coverage and comparable error when using MAiD. In the second
study, participants add roads in an area of Washington where major
roads are already mapped. With MAiD, participants add 3.5x more
roads with comparable error.

In summary, the contributions of this paper are:

• We develop MAiD, a machine-assisted map editing tool that
enables efficient human validation of automatically inferred
roads.

• We propose a novel pruning algorithm and teleport feature
that focus validation efforts on tasks where machine-assisted
editing offers the greatest improvement in mapping produc-
tivity.

• We develop an approach for inferring road topology from
aerial imagery that complements MAiD by improving on
prior work.

• We conduct user studies to evaluate MAiD in realistic editing
scenarios, where we use the current state of OpenStreetMap,
and find that MAiD improves mapping productivity by as
much as 3.5x.

The remainder of this paper is organized as follows. In Sec-
tion 2, we discuss related work. Then, in Section 3, we detail the
machine-assisted map editing features that we develop to incor-
porate automatic map inference into the map editing process. In
Section 4, we introduce our novel approach for map inference from

aerial imagery. Finally, we evaluate MAiD and our map inference
algorithm in Section 5, and conclude in Section 6.

2 RELATEDWORK
Inference fromAerial Imagery.Most state-of-the-art approaches
for inferring road maps from aerial imagery apply convolutional
neural networks (CNNs) to segment the imagery for “road” and
“non-road” pixels, and then post-process the segmentation output
to extract a road network graph. Cheng et al. develop a cascaded
CNN architecture with two jointly trained components, where the
first component detects pixels on the road, and the second focuses
on pixels close to the road centerline [6]. They then threshold and
thin the centerline segmentation output to extract a graph.

Shi et al. propose improving the segmentation output by using
a conditional generative adversarial network [14]. They train the
segmentation CNN not only to output the ground truth labels (with
a mean-squared-error loss), but also to fool a discriminator CNN
that is trained to distinguish between the ground truth labels and
the segmentation CNN outputs.

DeepRoadMapper adds an additional post-processing step to
infer missing connections in the initial extracted road network [11].
Candidatemissing connections are generated by performing a short-
est path search on a graph defined by the segmentation probabilities.
Then, a separate CNN is trained to identify correct missing connec-
tions.

Rather than segmenting the imagery, RoadTracer [2] and IDL [17]
employ an iterative graph construction (IGC) approach that extracts
roads via a series of steps in a search process. On each step, a CNN
is queried to determine what direction to move in the search, and
a road segment is added to a partial road network graph in that
direction. Although IGC methods improve accuracy, they are an
order of magnitude slower in execution time than segmentation
approaches and thus not suitable in interactive settings.
Inference from GPS Trajectories. Instead of using aerial im-
agery, several systems propose to instead infer maps from GPS
trajectories [4, 5, 15]. Each GPS trajectory is a sequence of GPS po-
sitions observed as a vehicle moves along the road network during
one trip. Kernel density estimation, clustering, and trajectory merg-
ing algorithms can be applied on datasets of trajectories collected
across many vehicles and trips to produce a road map.

Automatically extending existingmaps using GPS trajectory data
has also been studied. Most of these approaches share a common
map-matching-based architecture: they attempt to match trajecto-
ries to the road network, and portions of trajectories that fail to
match are clustered to produce new road segments [13, 18, 19]. Map-
Fuse instead proposes a more general map fusion scheme, where
the road network inferred by any map inference approach is fused
with the existing map [16].

3 MACHINE-ASSISTED iD
Building machine-assistance into the map editor to maximize the
improvement in mapping productivity is not straightforward. The
obvious approach, which we implemented in an early prototype,
would have users draw rectangles around areas with missing roads;
the system would then run automatic map inference to infer seg-
ments covering those roads, and create an overlay containing these
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Figure 1: Tracing the short, straight roads in (a) by hand can be done as quickly as validating inferred segments (yellow) corresponding to
such roads. But, tracing the long, arterial roads in (b) is much more tedious. In (c), because most roads are already covered by the map (white
segments), finding unmapped roads (yellow) is time-consuming.

Figure 2: The MAiD editing workflow. On the left, there is one mapped road segment in white, and several inferred roads in yellow. Then, the
user hides the overlay to verify the position of the roads in the imagery. After clicking on two of the yellow segments, these segments are
added to the map. Finally, on the right, the user removes an incorrect inferred segment by right-clicking.

segments. However, we found that often, most of the inferred seg-
ments corresponded to straight, short service and residential roads
that were not much faster to validate than to trace by hand. For
example, when tracing the unmapped roads in Figure 1(a), users
spend most of the time looking at the imagery and identifying the
positions of roads. The actual tracing can be done quickly – since
the roads are straight and cover a small area, only a few clicks are
needed. Because users still need to examine the imagery when vali-
dating the inferred segments, this system does not reduce mapping
time.

Thus, we instead focus on map editing in two specific contexts
where machine-assistance can improve mapping productivity sub-
stantially. In regions where themap has low coverage, tracingmajor,
arterial roads like those in Figure 1(b) is tedious because the roads
span large distances; thus, if we can focus validation on major roads,
machine-assistance can significantly speed up mapping. On the
other hand, in regions like Figure 1(c) where the map has high cov-
erage, further improving coverage requires users to painstakingly
scan the imagery for unmapped roads. We develop a teleport fea-
ture in the map editor that eliminates this time-consuming process
by panning users immediately to groups of unmapped roads.

In Section 3.1, we first introduce the user interface that we design
to incorporate validation of inferred segments into an existing map
editor. Then, in Section 3.2, we detail our pruning scheme that

retains inferred segments covering major roads, and in Section 3.3,
we describe our teleport functionality.

3.1 UI for Validation
We build MAiD, where we incorporate our machine-assistance
features into iD, a web-based OpenStreetMap editor.

A road network graph is a graph where vertices are annotated
with spatial coordinates (latitude and longitude) and edges corre-
spond to straight-line road segments. MAiD inputs an existing road
network graphG0 = (V0,E0) containing roads already incorporated
in the map. To use MAiD, users first select a region of interest
for improving map coverage. MAiD runs an automatic map infer-
ence approach in this region to obtain an inferred road network
graph G = (V ,E) containing inferred segments corresponding to
unmapped roads. G should satisfy E0 ∩ E = �; however, G and G0
share vertices at the points where inferred segments connect with
the existing map.

To make validation of automatically inferred segments intuitive,
MAiD then produces a yellow overlay that highlights inferred seg-
ments inG over the aerial imagery. Although the overlay is partially
transparent, in some cases it is nevertheless difficult to verify the
position of the road in the imagery when the overlay is active; thus,
users can press and hold a key to temporarily hide the overlay so
that they can consult the imagery.
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After verifying that an inferred segment is correct, users can
left-click the segment to incorporate it into the map. Existing func-
tionality in the editor can then be used to adjust the geometry or
topology of the road. If an inferred segment is erroneous, users can
either ignore the segment, or right-click on the segment to hide it.

Figure 2 shows the MAiD editing workflow.

3.2 Mapping Major Roads
However, we find that this validation-based UI alone does not sig-
nificantly increase mapping productivity. To address this, we first
consider adding roads in regions where the map has low coverage.
In practice, when mapping these regions, users typically focus on
tracing major, arterial roads that form the backbone of the road
network. More precisely, major roads connect centers of activity
within a city, or link towns and villages outside cities; in Open-
StreetMap, these roads are labelled “primary”, “secondary”, or “ter-
tiary”. Users skip short, minor roads because they are not useful
until these important links are mapped. Because major roads span
large distances, though, tracing them is slow. Thus, validation can
substantially reduce the mapping time for these roads.

Supporting efficient validation of major roads requires the prun-
ing of inferred segments corresponding to minor roads. However,
automatically distinguishing major roads is difficult. Often, major
roads have the same width and appearance as minor roads in aerial
imagery. Similarly, while major roads in general have higher cov-
erage by GPS trajectories, more trips may traverse minor roads in
population centers than major roads in rural regions.

Rather than detecting major roads from the data source, we
propose a shortest-path-based pruning scheme that operates on an
inferred road network graph to retain only inferred segments that
correspond to major roads. Intuitively, major roads are related to
shortest paths: because major roads offer fast connections between
far apart locations, they should appear on shortest paths between
such locations.

We initially applied betweenness centrality [8], ameasure of edge
importance based on shortest paths. The betweenness centrality
of an edge is the number of shortest paths between unique origin-
destination pairs that pass through the edge. (When computing
shortest paths in the road network graph, the length of an edge is
simply the distance between its endpoints.) Formally, for a road
network graph G = (V ,E), the betweenness centrality of an edge e
is:

д(e) =
∑

s,t ∈V
I [e ∈ shortest-path(s, t)]

We can then filter edges in the graph by thresholding based on
the betweenness centrality scores.

However, we find that segments with high betweenness central-
ity often do not correspond to important links in the road network.
When using a high threshold, the segments produced after thresh-
olding cover major roads connecting dense clusters in the original
graph, but miss connections to smaller clusters. When using a low
threshold, most major roads are retained, but minor roads in dense
clusters are also retained. Figure 3 shows an example of this issue.
Additionally, different regions require very different thresholds.

Figure 3: Thresholding by betweenness centrality performs poorly.
Grey segments are pruned to produce a road network graph contain-
ing the blue segments. On the left, a high threshold misses the road
to the eastern cluster. On the right, a low threshold includes small
roads in the northern and southern clusters.

Thus, we propose an adaptation of betweenness centrality for
our pruning problem.

Pruning Minor Roads Fundamentally, betweenness centrality
fails to consider the overall spatial distribution of vertices in the road
network graph. Dense but compact clusters in the road network
should not have an undue influence on the pruning process.

Our pruning approach builds on our earlier intuition, that major
roads connect far apart locations. Thus, rather than considering
all shortest paths in the graph, we focus on long shortest paths.
Additionally, we observe that the path may use minor roads near
the source and near the destination, but edges on the middle of a
shortest path are more likely to be major roads.

We first cluster the vertices of the road network. Then, we com-
pute shortest paths between cluster centers that are at least a min-
imum radius R apart. Rather than computing a score and then
thresholding on the score, we build a set of edges Emajor containing
edges corresponding to major roads that we will retain. For each
shortest path, we trim a fixed distance from the ends of the path,
and add all edges in the remaining middle of the path to Emajor. We
prune any edge that does not appear in Emajor.

Figure 4 illustrates our approach.
We find that our approach is robust to the choice of the clustering

algorithm. Clustering is primarily used to avoid placing cluster
centers at vertices that are at the end of a long road that only
connects a small number of destinations (and, thus, isn’t a major
road). In our implementation, we use a simple grid-based clustering
scheme: we divide the road network into a grid of r ×r cells, remove
cells that contain less than a minimum number of vertices, and
then place cluster centers at the mean position of vertices in the
remaining cells. We use r = 1 km, R = 5 km.

In practice, we find that for constant R, the runtime of our ap-
proach scales linearly with the length of the input road network.

MAiD Implementation. We add a button to toggle between an
overlay containing all inferred roads, and an overlay after pruning.
Figure 5 shows an example of pruning in Indonesia.
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Figure 4: Our pruning approach.We cluster the graph, and compute
shortest paths between cluster centers (left). Edges are trimmed
from the beginning and end of these paths, and the remaining edges
from the paths are retained (right).

Figure 5: Pruning inMAiD. Above, the overlay includes all automat-
ically inferred road segments. Below, pruning is applied to retain
only segments corresponding to major roads.

3.3 Teleporting to Unmapped Roads
In regions where the map already has high coverage, further im-
proving the map coverage is tedious. Because most roads already
appear in the map, users need to slowly scan the aerial imagery to
identify unmapped roads in a very time-consuming process.

To address this, we add a teleport capability into the map editor,
which pans the editor viewport directly to an area with unmapped
roads. Specifically, we identify connected components in the in-
ferred road network G, and pan to a connected component. This
functionality enables a user to teleport to an unmapped component,
add the roads, and then immediately teleport to another component.
By eliminating the time cost of searching for unmapped roads in
the imagery, we speed up the mapping process significantly.

However, there may be hundreds of thousands of connected
components, and validating all of the components may not be
practical. Thus, we propose a prioritization scheme so that longer
roads that offer more alternate connections between points on the
existing road network are validated first.

Let area(C) be the area of a convex hull containing the edges of
a connected component C in G, and let conn(C) be the number of
vertices that appear in bothC andG0, i.e., the number of connections
between the existing road network and the inferred component C .
We rank connected components by score(C) = area(C) + λconn(C),
for a weighting factor λ.

4 FAST, ACCURATE MAP INFERENCE
In the map inference problem, given an existing road network graph
G0 = (V0,E0), we want to produce an inferred road network graph
G = (V ,E) where each edge in E corresponds to a road segment
visible in the imagery but missing from the existing map.

Prior work in extracting road topology from aerial imagery gen-
erally employ a two-stage segmentation-based architecture. First,
a convolutional neural network (CNN) is trained to label pixels in
the aerial imagery as either “road” or “non-road”. To extract a road
network graph, the CNN output is passed through a heuristic post-
processing pipeline that begins with thresholding, morphological
thinning [20], and Douglas-Peucker simplification [7]. However,
robustly extracting a graph from the CNN output is challenging,
and the post-processing pipeline is error-prone; often, noise in the
CNN output is amplified in the final road network graph [2].

Rather than segmenting the imagery, RoadTracer [2] and IDL [17]
propose an iterative graph construction (IGC) approach that im-
proves accuracy by deriving the road network graph more directly
from the CNN. IGC uses a step-by-step process to construct the
graph, where each step contributes a short segment of road to a
partial graph. To decide where to place this segment, IGC queries
the CNN, which outputs the most likely direction of an unexplored
road. Because we query the CNN on each step, though, IGC requires
an order of magnitude more inference steps than segmentation-
based approaches. We find that IGC is over six times slower than
segmentation.

Thus, existing map inference methods are not suitable for the
interactive nature of MAiD.

We combine the two-stage architecture of segmentation-based
approaches with the road-direction output and iterative search
process of IGC to achieve a high-speed, high-accuracy approach. In
the first stage, rather than labeling pixels as road or non-road, we
apply a CNN on the aerial imagery to annotate each pixel in the
imagery with the direction of roads near that pixel. Figure 6 shows
an example of these annotations. In the second stage, we iteratively
construct a road network graph by following these directions in a
search process.

Ground Truth Direction LabelsWe first describe how we obtain
the per-pixel road-direction information shown in Figure 6 from a
ground truth road network G∗ = (V ∗,E∗). For each pixel (i, j), we
compute a set of angles A∗

i, j . If there are no edges in G∗ within a
matching threshold of (i, j), A∗

i, j = �.
Otherwise, suppose e is the closest edge to (i, j), and let p be

the closest point on e computed by projecting (i, j) onto e . Let Pi, j
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Figure 6:We train a CNN to annotate pixels with directions of roads
indicated by the arrows.

Figure 7:We computeA∗ at the position indicated by the blue square.
We project the position onto the closest road to obtain the orange
point. The purple points are exactly D distance along the road net-
work from the orange point.A∗ at this position contains angles from
the blue square to the purple points.

be the set of points in G∗ that are a fixed distance D from p; put
another way, Pi, j contains each point p′ such that p′ falls on some
edge e ′ ∈ E∗, and the shortest distance from p to p′ in G∗ is D.

Then, A∗
i, j = {angle(p′ − (i, j)) | p′ ∈ Pi, j }, i.e., A∗

i, j contains the
angle from (i, j) to each point in Pi, j .

Figure 7 shows an example of computing A∗
i, j .

RepresentingRoadDirections.We representA∗ as a 3-dimensional
matrix U ∗ that can be output by a CNN. We discretize the space of
angles corresponding to road directions into b = 64 buckets, where
the kth bucket covers the range of angles from 2kπ

b to 2(k+1)π
b . We

then convert each set of road directions A∗
i, j to a b-vector u

∗(i, j),
where u∗(i, j)k = 1 if there is some angle inA∗

i, j falling into the kth
angle bucket, and u∗(i, j)k = 0 otherwise. Then,U ∗

i, j,k = u(i, j)k .

CNN Architecture. Our CNN model inputs the RGB channels
from thew × h aerial imagery, and outputs aw × h × b matrixU .

We apply 16 convolutional layers in a U-Net-like configura-
tion [12], where the first 11 layers downsample to 1/32 the input
resolution, and the last 5 layers upsample back up to 1/4 the input
resolution. We use 3 × 3 kernels in all layers. We use sigmoid acti-
vation in the output layer, and rectified linear activation in all other

layers. We use batch normalization in the 14 intermediate layers
between the input and output layers.

We train the CNN on random 256 × 256 crops of the imagery
with a mean-squared-error loss,

∑
i, j,k (Ui, j,k − U ∗

i, j,k )
2, and use

the ADAM gradient descent optimizer [10].

Search Process. At inference time, after applying the CNN on
aerial imagery to obtainU , we perform a search process using the
predicted road directions inU to derive a road network graph. We
adapt the search process from IGC. Essentially, the search iteratively
follows directions inU to construct the graph, adding a fixed-length
road segment on each step.

We assume that a set of points Vinit known to be on the road
network are provided. If there is an existing map G0, we will show
later how to derive Vinit from G0. Otherwise, Vinit may be derived
from peaks in the two-dimensional matrixm(U )i, j = maxk Ui, j,k .
We initialize a road network graph G and a vertex stack S , and
populate both with vertices at the points in Vinit.

Let Stop be the vertex at the head of S , and let utop = U (Stop) be
the vector in U corresponding to the position of Stop. For an angle
bucket a,utop,a is the predicted likelihood that there is a road in the
direction corresponding to a from Stop. On each step of the search,
we use utop to decide whether there is a road segment adjacent
to Stop that hasn’t yet been mapped in G, and if there is such a
segment, what direction that segment extends in.

We first mask out directions in utop corresponding to roads al-
ready incorporated intoG to obtain a masked vector mask(utop); we
will discuss the masking procedure later. Masking ensures that we
do not add a road segment that duplicates a road that we captured
earlier in the search process. Then, mask(utop)a is the likelihood
that there is an unexplored road in the direction a.

If the maximum likelihood after masking,maxa mask(utop)a , ex-
ceeds a threshold T , then we decide to add a road segment. Let
abest = argmaxamask(utop)a be the direction with highest likeli-
hood after masking, and letwabest be a unit-vector corresponding
to angle bucket abest. We add a vertex v at Stop + Dwabest , i.e., at
the point D away from Stop in the direction indicated by abest. We
then add an edge (Stop,v), and push v onto S .

Otherwise, if maxa mask(utop)a < T , we stop searching from
Stop (since there are no unexplored directions with a high enough
confidence inU ) by popping Stop from S . On the next search step,
we will return to the previous vertex in S .

Figure 8 illustrates the search process. At the top, we show three
search iterations, where we add a segment, stop, and then add
another segment. At the bottom, we show the fourth iteration in
detail. Likelihoods in utop peak to the left, topleft, and right. After
masking, only the blue bars pointing right remain, since the left
and topleft directions correspond to roads that we already mapped.
We take the maximum of these remaining likelihoods and compare
to the threshold T to decide whether to add a segment from Stop or
stop.

When searching, we may need to merge the current search path
with other parts of the graph. For example, in the fourth iteration
of Figure 8, we approach an intersection on the right where the
perpendicular road was already added to G earlier in the search.
We handle merging with a simple heuristic that avoids creating
spurious loops. Let Nk (Stop) be the set of vertices within k edges
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Figure 8: The search process. Stop is purple, and other vertices in G
are blue. At top, we show three iterations that expandG . At bottom,
we show the decision process on the fourth iteration in detail, with
red indicatingmasked out directions and blue indicating remaining
directions.

from Stop. If Stop is within 2D of another vertex v in G such that
v < N5(Stop), then we add an edge (Stop,v).
Masking Explored Roads. If we do not mask during the search,
then we would repeatedly explore the same road in a loop. Masking
out directions corresponding to roads that were explored earlier in
the search ensures that roads are not duplicated in G.

We first mask out directions that are similar to the angle of edges
incident to Stop. For each edge e incident to Stop, if the angle of e
falls in bucket a, we set mask(utop)a+k = 0∀k,−5 ≤ k ≤ 5.

However, this is not sufficient. In the fourth iteration of Figure
8, there is an explored road to the north of Stop, but that road is
connected to a neighbor west of Stop rather than directly to Stop.
Thus, we also mask directions that are similar to the angle from
Stop to any vertex in N5(Stop).
Extending an Existing Map. We now show how to apply our
map inference approach to improve an existing road network graph
G0. Our key insight is that we can use points on G0 as starting
locations for the search process. Then, when new road segments
are inferred, these points inform the connectivity between the new
segments and G0.

We first preprocess G0 to derive a densified existing map G ′
0.

Densification is necessary because there may not be a vertex at
the point where an unmapped road branches off from a road in
the existing map. To densify G0 = (V0,E0), for each e ∈ E0 where
length(e) > D, we add ⌊

length(e)
D ⌋ evenly spaced vertices between

the endpoints of e , and replace e with edges between those vertices.
This densification preprocessing produces a base map G ′

0 where
the distance between adjacent vertices is at most D.

To initialize the search, we setG = G ′
0, and add vertices inG

′
0 to S .

We then run the search process to termination. The search produces
a merged road network graph G that contains both segments in
the existing map and inferred segments. We extract the inferred
road network graph by removing the edges of G ′

0 from this output
graph G.

5 EVALUATION
To evaluate MAiD, we perform two user studies. In Section 5.1,
we consider a region of Indonesia where OpenStreetMap has poor
coverage to evaluate our pruning approach. In Section 5.2, we turn
to a region of Washington where major roads are already mapped
to evaluate the teleport functionality.

In Section 5.3, we compare our map inference scheme against
prior work in map inference from aerial imagery on the RoadTracer
dataset [2]. We show qualitative results when using MAiD with our
map inference approach in Section 5.4.

5.1 Indonesia Region: Low Coverage
We first conduct a user study to evaluate mapping productivity
when adding roads in a small area of Indonesia with no coverage
in OSM. With MAiD, the interface includes a yellow overlay of
automatically inferred roads; to obtain these roads, we generate an
inferred graph from aerial imagery using our map inferencemethod,
and then apply our pruning algorithm to retain only the major
roads. After validating the geometry of a road, the user can click it
to incorporate the road into the map. In the baseline unmodified
editor, users manually trace roads by performing repeated clicks
along the road in the imagery.
Procedure. The task is to map major roads in a region using the
imagery, with the goal of maximizing coverage in terms of the
percentage of houses within 1000 ft of the road network. Users are
also asked to produce a connected road network, and to minimize
the distance between road segments and the road position in the
imagery. We define two metrics to measure this distance: road
geometry error (RGE), the average distance between road segments
that the participants add and a ground truth map that we hand
label, and max-RGE, the maximum distance.

Ten volunteers, all graduate and postdoctoral students age 20-
30, participate in our study. We use a within-subjects design; five
participants perform the task first on the baseline editor, and then
on MAiD, and five participants proceed in the opposite order.

Participants perform the experiment in a twenty-minute session.
We select three regions from the unmapped area: an example region,
a training region, and a test region. We first introduce participants
to the iD editor, and enumerate the editor features as they add one
road. We then describe the task, and show them the example region
where the task has already been completed. Participants briefly
practice the task on the training region, and then have four minutes
to perform the task on a test region. We repeat the training and
testing for both editors.

We choose the test region so that it is too large to map within the
allotted four minutes. We then evaluate the road network graphs
that the participants produce using each editor in terms of coverage
(percentage of houses covered), RGE, and max-RGE.
Results. We report the mean and standard error of the percentage
of houses covered by the participants with the two editors in Figure
9. We find that MAiD improves the mean percentage covered by
1.7x (from 17% to 29%). While manually tracing a major road may
take 15-30 clicks, the road can be captured with one click in MAiD
after the geometry of an inferred segment is verified.

RGE and max-RGE are comparable for both editors, although
there is more variance between participants with the baseline editor
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Figure 9: Mean and standard error of the percentage of houses cov-
ered in maps produced with the baseline editor and MAiD.

because the roads are manually traced. Themean and standard error
of RGE across the participants is 5.0m ± 0.6m with the baseline,
and 4.1m ± 0.1m with MAiD. For max-RGE, it is 33m ± 5m with
the baseline, and 20m ± 1m with MAiD.

5.2 Washington Region: High Coverage
Next, we evaluate mapping productivity in a high-coverage region
of rural Washington. With MAiD, users can press a Teleport button
to immediately pan to a group of unmapped roads. A yellow overlay
includes all inferred segments covering those roads; we do not use
our pruning approach for this study. With the baseline editor, users
need to pan around the imagery to find unmapped roads. After
finding an unmapped road, users manually trace it.
Procedure. The task is to add roads that are visible in the aerial
imagery but not yet covered by the map. Because major roads
in this region are already mapped, rather than measuring house
coverage, we ask users to add as much length of unmapped roads
as possible. We again ask users to minimize the distance between
road segments and the road position in the imagery, and to ensure
that new segments are connected to the existing map.

Ten volunteers (consisting of graduate students, postdoctoral
students, and professional software engineers all age 20-30) par-
ticipate in our study. We again use a within-subjects design and
counterbalance the order of the baseline editor and MAiD.

Participants perform the experiment in a fifteen-to-twentyminute
session. For each editing interface, we first provide instructions on
the task and editor functionality (accompanied by a 30-second video
where we use the editor), and show images of example unmapped
roads. Participants then practice the task on a training region in a
warm-up phase, with a suggested duration of two to three minutes.
After participants finish the warm-up, they are given three minutes
to perform the task on a test region. As before, we repeat training
and testing for both interfaces.

We evaluate the road network graphs that the participants pro-
duce in terms of total road length, RGE, and max-RGE.
Results.We report the mean and standard error of total road length
added by the participants in Figure 10. MAiD improves mapping

Figure 10: Mean and standard error of the total length of added
roads with the baseline editor and MAiD.

productivity in terms of road length by 3.5x (from 25 km to 88
km). Most of this improvement can be attributed to the teleport
functionality eliminating the need for panning around the imagery
to find unmapped roads. Additionally, though, because teleport
prioritizes large unmapped components with many connections to
the existing road network, validating these components is much
faster than manually tracing them.

As before, RGE and max-RGE are comparable for the two editors.
Mean and standard error of RGE is 7.0m ± 0.7m with the baseline
editor, and 5.3m±0.1mwith MAiD. For max-RGE, it is 53m±14m
with the baseline, and 39m ± 4m with MAiD.

5.3 Automatic Map Inference
Dataset. We evaluate our approach for inferring road topology
from aerial imagery on the RoadTracer dataset [2], which contains
imagery and ground truth road network graphs from forty cities.
The data is split into a training set and a test set; the test set includes
data for a 16 sq km region around the city centers of 15 cities, while
the training set contains data from 25 other cities. Imagery is from
Google Maps, and road network data is from OpenStreetMap.

The test set includes 9 cities in the U.S., 3 in Canada, and 1 in
each of France, the Netherlands, and Japan.
Baselines.We compare against the baseline segmentation approach
and the IGC implementation from [2]. The segmentation approach
applies a 13-layer CNN, and then extracts a road network graph
using thresholding, thinning, and refinement. The IGC approach,
RoadTracer, trains a CNN using a supervised dynamic labels proce-
dure that resembles reinforcement learning. This approach achieves
state-of-the-art performance on the dataset, onwhichDeepRoadMap-
per [11] has also been evaluated.
Metrics. We evaluate the road network graphs output by the map
inference schemes on the TOPOmetric [3], which is commonly used
in the automatic road map inference literature [1]. TOPO evaluates
both the geometrical accuracy (how closely the inferred segments
align with the actual road) and the topological accuracy (correct
connectivity) of an inferred map. It simulates an agent traveling
on the road network from an origin location, and compares the
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Figure 11: Average TOPO recall and error rate (1−precision) over the
15 test cities. For each approach, we show a precision-recall curve
over different parameter choices.

Approach Inference Processing Total
Segmentation 84 sec 74 sec 158 sec

IGC 947 sec 116 sec 1063 sec
Our Approach 85 sec 51 sec 136 sec

Table 1: Execution time evaluation. Inference is time spent applying
the CNN, while processing includes all other execution time.

destinations that can be reached within a fixed radius in the inferred
map with those that can be reached in the ground truth map. This
comparison is repeated over a large number of randomly selected
origins to obtain an average precision and recall.

We also evaluate the execution time of the schemes on an AWS
p2.xlarge instance with an NVIDIA Tesla K80 GPU.
Results. We show TOPO precision-recall curves obtained by vary-
ing parameter choices in Figure 11, and average execution time in
the 15-square-km test regions for parameters that correspond to a
10% error rate in Table 1. We find that our approach exhibits both
the high-accuracy of IGC and the speed of segmentation methods.

Our map inference approach has comparable TOPO performance
to IGC, while outperforming the segmentation approach on error
rate by up to 1.6x. This improvement in error rate is crucial for
machine-assisted map editing as it reduces the time users spend
validating incorrect inferred segments.

On execution time, our approach performs comparably to the
segmentation approach, while IGC is almost 8x slower. A low exe-
cution time is crucial to MAiD’s interactive workflow. Users can
explore a new region for two to three minutes while the automatic
map inference approach runs; however, a fifteen-minute runtime
breaks the workflow.

5.4 Qualitative Results
In Figure 12, we show qualitative results from MAiD when using
segments inferred by our map inference algorithm.

6 CONCLUSION
Full automation for building road maps has proven unfeasible due
to high error rates in automatic map inference methods. We instead
propose machine-assisted map editing, where we integrate automat-
ically inferred road segments into the existing map editing process
by having humans validate these segments before the segments
are incorporated into the map. Our map editor, Machine-Assisted
iD (MAiD), improves mapping productivity by as much as 3.5x
by focusing on tasks where machine-assistance provides the most
benefit. We believe that by improving mapping productivity, MAiD
has the potential to substantially improve coverage in road maps.
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Figure 12: Qualitative results fromMAiD with our map inference algorithm. Segments in the existing map are in white. We show our pruning
approach applied on a region of Indonesia in the top image, with pruned roads in purple and retained roads in yellow. Themiddle and bottom
images show connected components of inferred segments that the teleport feature pans the user to, inWashington and Bangkok respectively.
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